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AN APPLICATION OF SYNTACTIC PATTERN RECOGNITION
TO SEISMIC DISCRIMINATION*

HSI-HO LIU and KING-SUN FU

School of Electrical Engineering
Purdue University

West Lafayette, Indiana 47907

8BSTRACT

Two syntactic methods for the recognition of seismic

waveforms are presented in this paper. The seismic waveforms are

represented by sentences (strings of primitives). Primitive

extraction is based on a cluster analysis. Finite-state grammars

are inferred from the training samples. The nearest-neighbor

decision rule and error-correcting finite-state parsers are used

for pattern classification. While both show equal recognition

performance, the nearest-neighbor rule is much faster in computa-

tion speed. The classification of real earthquake / explosion

data is presented as an application example.

Seismological methods are the most effective and practical

methods for detecting nuclear explosions, especially for under-

ground explosions. Position, depth and origin time of the seismic

events are useful information for discrimination; so are body

wave magnitude and surface wave magnitude of the seismic wave

C1,23. Unfortunately, they are not always applicable and reliable

for small events. It would be very helpful if the discrimination

* This work was supported by the NG Grant PFR 79-06296 and the
ONR Contract N00014-79-C-0574. 7
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is based on the short-period waves alone. The application of pat-

tern recognition techniques to seismic wave analysis has been

studied etensively C3-53 in the last few years. They all use

short-period waves only. Most of these studies concentrated on

feature selection. Only simple decision-theoretic approaches have

been used. However, syntactic pattern recognition appears to be

quite promising in this area. It uses the structural information

of the seismic wave which is very important in analysis. In this

paper, we present two different methods of syntactic approach to

the recognition of seismic waves. One uses the nearest-neighbor

decision rule, the other uses the error-correcting parsing.

In the first method, a pattern representation sjbsystem con-

verts the seismic waveforms into strings of primitives. The

string-to-string distances between the test sample and all the

training samples are computed and then the nearest-neighbor deci-

sion rule is applied. The block diagram is shown in Figure 1(a).

The second method contains pattern representation, automatic

grammatical inference and error-correcting parsing. The block

diagram is shown in Figure 1(b).

The pattern representation subsystem performs pattern seg-

mentation, feature selection and primitive recognition so as to

convert the seismic wave into a string of primitives. The

autoratic grammatical inference subsystem infers a finite-state

(regular) grammar from a finite set of training samples The

error-correcting parser can accept erroneous and noisy patterns.

Human interaction is required only in the training stage, mostly

. ... • .. .. . .. ..... .. ... r . .. ... . . . . " " . :' ; ... . . . . .. i, ._ ."-. . .. -
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Test Class if i-
Sanpes Pattern String-to- Nearest- cation

Represen- string Neighbor

tation Distance Decision results
Computation Rule

Analysis

Training

Training
Samples Pattern

-* Represen-
tation

Figure 1(a) Block diagram of the nearest-neighbor
decision rule for string patterns.

Test , Classification
Samples Pattern Error- results

-, ) Reprosen- ICorrecting -
ration Parsing

Analysis

Training

Training
Sanples Pattern Grammatical

Represen- Inference
ration

Figure 1(b) Block diagram of the error-correcting
parsing system

in pattern representation and slightly in grammatical inference.

We use our syntactic patten recognition methods to classify

nuclear explosions and earthquakes based on the seismic P-waves.

A typical sample from each class is shown in Figure 2(a).
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However, extreme cases do exist. A1 near explosion looks like t~p-

ical earthquakes while a deep earthquake looks like teipical

explosions. They are shown in Figure 2(b).

LL. PATERN REPRESENTATION

Seismic records are one-dimensional waveforms. Although

there exist several alternatives C6,73 for representing one-

dim~ensional waveforms, it is most natural to represent them byjr-

sentences, i. e. , strings of primitives. Three steps are required

for the conversion -- pattern segmentation, feature selection and

primitive recognition.

Pi.te.Urn Segmentation

A digitized waveform to be processed bij a digital computer

is usuallyj sampled from a continuous waveform which represents

the phenomena of a source plus external noise. For some cases,

such as EKG wave C83, everyj single peak and valley are signifi-

cant. Therefore these waveforms can be segmented according to the

shape. For others, like EEG C93 and seismic wave, a single peak

or volleyj does not reveal too much information, especiallyj when

the signal to noise ratio is low. Therefore, they should be seg-

mented byj length, either a fixed length or variable length. A

variable-length segmentation is more efficient and precise in

representation, but it is usually~ very difficult and time consum-

ing to find an appropriate segmentation. A fixed-length segmenta-

tion is much easier to implement. If the length is kept short

enough it will be adequate to represent the original waveform.



Figure 2(a) Tyjpical samples from each class, explosion
(top) and earthquake (bottom).

(top) and earthq~uake (bottom).

The selection of segment length is cast dependent. It can be



anywhere between the two extremes, i.e., as long as the whole

waveform or as short as one point. There are tradeoffs between

the representation accuracy and analysis efficency. The shorter

the segmentation is, the more accurate the representation will

be. But the analysis becomes more inefficient since the string is

longer and the parsing time is proportional to the string length.

Another problem is the noise. If the segmentation is too short,

it will be very sensitive to noise. A rule of thumb is that each

segment should contain several periods of the waveforms. In our

seismic data base each seismic record contains 1200 sample

points. The sampling frequency is 10 points per second. Each

record is divided into 20 segments with 60 points in each seg-

ment.

. F JjLULTSelection

This is the most difficult and critical part in pattern

recognition. Any linear functions or nonlinear functions of the

original measurements may be considered as features provided they

give discriminating power. Both time domain features and fre-

quency domain features have been used for seismic discrimination.

For example, complexity and autoregressive models are features in

time domain; spectral ratio and third moment of frequency are

features in frequency domain C23. Since we segment the seismic

wave, complexity and spectral ratio features are implicitely con-

tained in the string structure. Furthermore, the segment may be

too short for a model estimation if we use shorter segment.

Therefore, we selected a pair of comonly used features -- zero
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crossing count and log energy of each segment, which are easy to

compute and contain significant information. Other features may

also serve as good candidates. An advantage of syntactic

approach is that feature selection is simpler, since features are

extracted from segments and each segment is much simpler in com-

parison with the whole waveorm.

£.Primitive Reogj_ itiLon

After segmentation and feature selection, primitives can be

recognized from the analysis of training segments, and an iden-

tifier assigned to each segment. This problem can be solved in

two ways -- either classified by human experts or by a computer.

We choose the latter, since human classifications are not always

available and reliable. In addition we need to try different seg-

mert lengths in order to find an optimal segmentation. Therefore,

we use automatic clustering analysis to classify each segment. In

the clustering process, similar samples will be grouped together.

The similarity between a pair of samples is usually defined by

the distance between them. Each segment is represented by a vec-

tor X - (xi. x2 . .... xK) where x., 1 i C k, is the i-th

feature, k is the total number of features. In our case, k = 2.

If the number of clusters is known, then the K-means algo-

rithm can be applied to find a clustering which minimizes a per-

fortrance index. When the number of clusters is unknown there is

no universally applicable algorithm to determine the optimal

cluster number. We use a bottom-up hierarchical clustering algo-

,d.



rithm CIO] to find the clustering of a sequence of cluster

numbers. The starting cluster number can be arbitrarilV selected.

It may equal to the number of the training segments, but it is

too time consuming even for a moderately large training set.

Therefore we start from a smaller number, say 20, to find the

clustering using K-means algorithm. The nearest pair of clusters

will be merged and the cluster number is decreased by one. The

K-means algorithm is applied again for reorganization. This

clustering-merging cycle repeats until the cluster number reaches

a preset lower bound, say 5, then the procedure stops.

Algorithm L: jgjLgW-UA Hierarachical Clustering

Input: A set of n unclassified samples, an upper bound U

and a lower bound L.

Ouput: A sequence of optimal clusterings for the number of

clusters between U and L.

Method:

1) Let c - U, c is the number of clusters, and arbitrarily

assign cluster menbership.

2) Reassign membership using K-means algorithm. If

c L , stop.

3) Find the nearest pair of clusters, say Xi and Xj,

i j.

4) Merge X L and Xi, delete Xj and decrease c by one,

go to step 2.

The distance between two clusters is defined by
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d (Xi, Xi) i -m1

where mi mi is the mean vectors of clusters i, j respectively.

The main problem that still remains unsolved at this point

is to determine the optimal cluster number. Some criteria have

been suggested for determining the optimal cluster number. How-

ever, they are not always applicable. We determine the cluster

number by inspecting the increment of merge distance. When a

merge of two clusters is natural, the increment of merge distance

should be smalli otherwise it will be large. This can only be

determined from a sequence of cluster numbers. The merge dis-

tances of our training samples from 18 clusters down to 7 clus-

ters are shown in Table I. The increments of merge distances are

considerably large after ten clusters. Therefore, it is reason-

able to select ten to be the optimal number of clusters. After

the cluster number had been determined, an identifier was

assigned to each cluster. A test segment is assigned to some

cluster if the distance between the test segment and that cluster

is the smallest. All the seismic waves are thereby converted into

strings of primitives, or sentences.

UI. SYNTAX A

If the classification is all we need, then the nearest-

neighbor decision rule is recommended because of it's computation

efficiency. On the other hand, if a complete description of the

waveform structure is needed, we have to use (error-correcting)

parsing. An error-correcting parser instead of regular parser is
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TABLE I
Merge distances of bottom-up
hierarchical clustering process

Cluster Merge distance Increment of
number merge distance

18 18.7

17 29.9 11.2

16 36.6 6.7

15 37.7 1.1

14 43.7 6.0

13 47.6 3.9

12 57.2 9.6

11 67.4 10.2

10 94.5 27.1

9 105.4 10.9

8 144.9 39.5

7 187.1 42.2

required for most practical pattern recognition applications.

Since noisy and errors in previous processings usually cause reg-

ular parsers to fail. It is not unusual that even a perfect pat-

tern can not be parsed by a regular parser, especially when the

gramnar is inferred from a small set of samples. In that case,

the error-correcting parsing is equivalent to finding the dis-

tance between a sentence and a language. The parse of the sen-

tence may contain some error productions.

..N. . ...-N.i.hbor Decision ...



rhe concept of nearest-neighbor decision rule in syntactic

approach is the same as that in decision-theoretic approach. The

only~ difference is in distance calculation. The distance between

two strings is sometimes called Levenshtein distance (113, which

is the minimum number of syjmbol insertions, deletions and substi-

tutions required in order to transform one string into the other.

If different weights are assigned to different syjmbols and/or

operations, then the distance becomes a weighted Levenshtein dis-

tance. These distances can be computed using dynamic programming

method C123. Figure 5 shows the shortest path which transforms

the string on the left into the string on the top.

a. ab aa b

0.0

a0

bT
b 0

Figure 5 The shortest path which transforms string 'ababb'
into string 'aabaab'. The distance between these
two strings is 2. Horizontal movement means
insertion; vertical movement means deletion;
diagonal movement means substitution. Each
insertion, deletion and substitution have same
weight 1.

it. ELtL-Corretkinot Ei Atj-iSt E*Lsina

Before parsing can take place we must have a grammar. which

can be either heuristically constructed or inferred from a set of
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training samples. In order to study the learning capabilitq of

our syntactic method, we choose the grammatical inference

approach.

Phase Structure aM

A phrase structure grammar G is a 4-tuple

G - (V , VT , P. S), where

V4: finite set of nonterminal symbols

VT: finite set of terminal symbols, VN U VT V,

V, n VT -

S : start symbol, S Q VN.

P : finite set of productions or rewrite rules of the

form t-> P, , p E VA. o A X; V is the set of all finite

length strings of symbols from V, including A. the null

string, V
1  V -

Let G - (VN, VT , P, S) be a grammar. If every production in

P is of the form A -> aB, or A -> a, A, B E VMS a E VT, then the

grannar 0 is finite-state or regular C133.

Phrase structure grammars have been used to describe pat-

terns in syntactic pattern recognition £143. Each pattern is

represented by a string of primitives which corresponds to a sen-

tence in a language (tree or graph in high dimensional grammars).

All strings which belong to the same class are generated by one

grammar.

Grnai-ca Inference

I4
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A set of sentences S is a positive sample of a language

L(C), if 8 + r L(G). A set of sentences S is a negative sample of

a language L(G), if 8" 5 L(G).

A positive sample S + of a language L(G) is structurally com-

plete if each production in Q is used in the generation of at

least one string in S (153.

We assume that the set S is structurally complete and S+

L(OD), where G, is the inferred grammar. Theoretically, if S + is

a structurally complete sample of the language L(G) generated by

the finite-state grammar G then the canonical grammar G. can be

inferred from S+ , A set of derived grammars can be derived from

G¢. The derived grammars are obtained by partitioning the set of

nonterminals of the canonical grammar into equivalence classes.

Each nonterminal of the derived grammar corresponds to one block

of the partition. Since the number of possible partitions is too

large it is infeasible to evaluate all the partitions. Therefore

some algorithms such as k-tail algorithm E163 has been suggested

to reduce the number of derived grammars. These algorithms have

one disadvantage. The reduced subset of derived grammars may not

contain the source grammar. However, it will be sufficient if one

only interests in an estimate of the source grammar. There are at

least two situations where a grammatical inference algorithm can

be used. In the first case there exists a source grammar which

generates a language and we want to infer the source grammar or

automaton based on the observed samples. In the second case the

exact nature of the source grammar is unknown, the only

II
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information we have is some sentences generated by the source. We

assume that the source grammar falls into a patricular class and

infer a grammar which generates all the training samples, and

hopefully will generate some samples belonging to the same class.

If a negative sample set is given the inferred grammar must not

generate any sample in the negative sample set.

Qrammars more complex than finite-state grammars and res-

tricted context-free grammars (in Chomskq hierarchy) can not be

inferred efficiently without human interaction. Therefore we

choose finite-state grammars to describe the seismic waves.

Another reason is that no obvious self-embedding property appears

in seismic waves, finite-state grammars will be sufficient in

generating power.

The inference of regular grammars has been studied exten-

sively. The k-tail algorithm finds the canonical grammar first

and then merges the states which are k-tail equivalent. This

algorithm is adjustable, the value of k controls the size of the

inferred grammar. Another algorithm called tail-clustering algo-

rithmi C17] also finds the canonical grammar first, but then

merges the states which have common tails. This algorithm is not

as flexible as the k-tail algorithm# but will infer a grammar

which is closer to the source grammar in some cases. Since the

grammar is inferred from a small set of training samples* we can

only expect that the inferred grammar generates all the training

samples and will generate other strings which are similar to the

training samples.
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The generating power of the inferred grammar relies entirely

an the merge procedure. If no merge exists then the inferred

grafmar will generate exactly the some training set, no more no

less. Since all the seismic records have the same length in our

example, the sentences representing these signals also have the

same length. The merge of states does not happen in our experi-

ment when using tail-clustering algorithm.

KL2TCr-oLIin arsALing

After a grammar is available, either by inference or con-

struction, the next step is to design a recognizer which will

recognize the patterns generated by the grammar. If the grammar G

is finite-state, a deterministic finite-state automaton can be

constructed to recognize the strings generated by G.

Noise problem and primitives recognition error usually~ occur

in pratice. Conventional parsing algorithms can not handle these

situations. A few approaches have been proposed. Error-correcting

parsing is one of them E183. The pattern grammar is first

transformed into a covering grammar that generates the correct

sentences as well as all the possible erroneous sentences. The

errors in string patterns are substitution error, deletion error

and insertion error. For nonstochastic grammar, the minimum-

distance criterion can be used for error-correcting parsing.

Since all the sentences in our example have the same length,

only the substitution error needs to be considered. For each pro-

duction A -> aB and A -> a in the original grammar we add A -> bB



r
and A -) b respectively to the covering grammar, where A, B V4 ,

a, b e Vr , b 4 a. Different weight can be assigned to each error

production, therefore, resulting an minimum-cost error-correcting

parser. The assignment of weights is very crucial. We use the

distance between clusters a and b as the weight for substituting

a by b and vise versa. Since a finite-state grammar can be

represented by a transition diagram. Thus, a minimum-cost error-

correcting parsing is equivalent to finding a minimum cost path

from initial state to final state. The parsing time is propor-

tional to the length of the sentence.

Algorithm &: inMaui-j± L aLlh

Input. A transition diagram with n nodes numbered 1. 2

n, where node 1 is initial state and node n is final state.

and a cost function c (a), for I C i, 1 4 n, a al, with ci (a)

>O, for all i and j. An input string s.

Output. m1i the lowest cost of any path from node 1 to node n

whose sequence is equal to that of the input string s.

Method.

1) Set k = 1.

2) For all I j 4 n, m * - min {m,, + ckh(b), for all

1 6 k * n), where b is the k-th symbol of input string s.

3) If k < isl, increase k by 1 and go to step (2),

If k - Is!, go to step (4).

4) output m1 h, which is the lowest cost from node 1 to

node n following the move of input string s. Stop.

The production number can be stored with cc (a), and the
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parse can be stored with m

If insertion and deletion errors are to be considered, then

the parser will still be similar except that we have to compute

and store the information V(T, S, a) which is the minimum cost of

changing character '' into some string which can change the

state of the automaton from state T to S E193. The inclusion of

insertion and deletion errors makes the error correction more

complete, but assigning appropriate weights to insertion and

deletion error could be even more difficult.

Our seismic data are provided by professor C. H. Chen. They

were recorded at LASA in Montana. The original data contains 323

records. Due to some technical problems in data conversion we

only get 321 records. Among them 111 records are nuclear explo-

sions and 210 records are earthquakes. The experiment was run on

a VAX 11/780 computer using PASCAL programming language. A set of

50 carefully selected samples from each class is used as training

samples. The remaining 210 samples are test samples. The weights

for substitution errors are shown in Table II. The results shown

in Table III and Table IV are the information about the inferred

graffenar and parsing. The grammars are inferred using K-tail algo-

tithi- with different values of k. Table III contains the number

of nonterminals, the number of productions and the number of

negative samples accepted. Table IV contains average parsing time

for one string and the percentage of correct classification. It
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can be seen that as the value of k becomes smaller, the parsing

time becomes shorter but the classification error becomes larger.

This results from the uneven merge of the nonterminals. Duo to

the characteristics of our sample set only those states having

the longest tails are merged. The results using nearest-neighbor

decision rule are shown in Table V. It compares the string-to-

string distance between the test sample and the whole class of

training samples. The computation speed of nearest-neighbor rule

is much faster than that of error-correcting parsers. Althouth

the ultimate performance is about the same. As far as practical

computation is concerned. nearest-neighbor decision rule is much

faster than the grammatical approach.

TABLE IIWeights for substition error

a b c d 0 f g h i j

a 0 0.33 0.45 0.79 0.86 0.76 0.91 0.62 0.60 0.61

b 0.33 0 0.28 0.46 0.56 0.54 0.85 0.33 0.48 0.29

c 0.45 0.28 0 0.46 0.44 0.31 0.57 0.23 0.20 0.46

d 0.79 0.46 0.46 0 0.22 0.41 0.88 0.24 0.56 0.28

0 0.86 0.56 0.44 0.22 0 0.24 0.71 0.24 0.46 0.48

f 0.76 0.54 0.31 0.41 0.24 0 0.47 0.24 0.24 0.58

g 0.91 0.85 0.57 0.88 0.71 0.47 0 0.68 0.37 1.00

h 0.62 0.33 0.23 0.24 0.24 0.24 0.68 0 0.33 0.34

i 0.60 0.48 0.20 0.56 0.46 0.24 0.37 0.33 0 0.64

0.61 0.29 0.46 0.28 0.48 0.58 1.00 0.34 0.64 0

Y. CONCLUDIN R l
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TABLE III
The number of nonterminal. production and negative samples

accepted of the inferred grammars. The inference algorithm
is k-tail algorithm with different values of k.

Explosion Earthquake No. of
k negative

Nonterm. Product. Nonterm. Product. samples
No. No. No. No. accepted

20 749 796 746 794 0

19 748 796 746 794 0

is 741 796 737 794 0

17 722 778 715 772 0

16 694 751 686 743 0

15 656 714 650 708 0

14 10 668 608 666 0

13 618 561 619 0

12 510 568 5l 569 0

11 460 518 461 519 0

9 360 418 361 419 0

7 262 319 261 319 2

5 166 222 164 220 6

Though the classification results seem satisfactory theo are

very sensitive to the feature selection, the selection of train-

ing samples and the weight assignment of error productions.

Although a finite set of samples have some limitations. It still

males sense to pursue more studies about the following problems.

1. Feature selection. How to find a set of distinguishable

features is the most important part in practical applications.
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TABLE IV
The average parsing time and percentage of correct

classification of the error-correcting parsers with
different values of k.

k Average parsing time Percentage of correct

for one string (soc) classification (7.)

20 2.6 90.5

19 2.6 90.5

19 2.8 85.5

17 2.7 82.9

16 2.6 75.6

15 2.5 76.0

14 2.4 73.8

13 2.1 73.3

12 1.9 72.9

11 1.7 71.0

9 1.4 70.1

7 1. 1 70.6

5 0.8 60.2

The difficulty increases when the class are somewhat overlapped.

Possible solution are finding some kind of transformation which

will seperate the classes or selecting the most distinguishable

feature. Most of the features which are effective for statistical

approach can be used for svntactic approach. The selection of

feature number also deserves consideration. Some criteria are

needed so that a judgement can be made.

2 Selection of training samples. It would be helpful if

IW
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TABLE V
Classification results using

nearest-neighbor decision rule

Average time for Percentage of
one string (sac) correct classification

0.07 90.5 %

200 records are correctly
classified out of 221

hunan experts are available for consultation. The clustering

techniques can be used to get an initial training set* then it

can be adjusted to obtain the best results. Clustering techniques

can also be used to find good prototypes from a set of samples.

A small set of well-selected training samples will certainly

reduce computation time and, in the meantime, may improve the

classification accuracy.
Is

3 Weight assignment of error productions. This part is very

important in error-correcting parsing, and only exists in syntac-

tic approach. Equal weight assignment is very easy to implement

and has been used. However, it is not always appropriate since

costs should be different for different errors. The similarity

between two primitives is a good reference for assigning weights

to substitution errors. The weights of insertion and deletion

errors are more difficult to assign. Only heuristic approaches

have been known so far.
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